

Patient Information: N6002, DONOR DOB: Sex: M MR#: Patient#: FT-PT8686542

Accession: FT-7160558 Test#: FT-TS14793203 Specimen Type: Blood (EDTA) Collected: Mar 20.2024

FINAL RESULTS

Accession: N/A

Not Tested

Partner Information:

Physician: Kuan, James ATTN: Kuan, James Seattle Sperm Bank 4915 25th Avenue NE, Ste 204W Seattle, WA 98105 Phone: (206) 588-1484 Laboratory: Fulgent Therapeutics LLC CAP#: 8042697 CLIA#: 05D2043189 Laboratory Director: Dr. Hanlin (Harry) Gao Report Date: Mar 28,2024

TEST PERFORMED

Carrier for genetic conditions in **multiple** genes. Genetic counseling is recommended.

Beacon Preconception Carrier Screening - 515 Genes (without X-linked Disorders)

(515 Gene Panel; gene sequencing with deletion and duplication analysis)

Condition and Gene	Inheritance	N6002, DONOR	Partner
Limb-girdle muscular dystrophy, type 2D	AR	Carrier	N/A
SGCA		c.229C>T (p.Arg77Cys)	
Phenylalanine Hydroxylase deficiency	AR	Carrier	N/A
(Phenylketonuria) PAH		c.1315+1G>A (p.?)	

INTERPRETATION:

Notes and Recommendations:

- Based on these results, this individual is positive for carrier mutations in 2 genes. Carrier screening for the reproductive
 partner is recommended to accurately assess the risk for any autosomal recessive conditions. A negative result reduces, but
 does not eliminate, the chance to be a carrier for any condition included in this screen. Please see the supplemental table for
 details.
- Testing for copy number changes in the SMN1 gene was performed to screen for the carrier status of Spinal Muscular Atrophy. The results for this individual are within the normal range for non-carriers. See Limitations section for more information.
- This carrier screening test does not screen for all possible genetic conditions, nor for all possible mutations in every gene tested. This report does not include variants of uncertain significance; only variants classified as pathogenic or likely pathogenic at the time of testing, and considered relevant for reproductive carrier screening, are reported. Please see the gene specific notes for details. Please note that the classification of variants can change over time.
- Patients may wish to discuss any carrier results with blood relatives, as there is an increased chance that they are also carriers. These results should be interpreted in the context of this individual's clinical findings, biochemical profile, and family history.
- X-linked genes are not routinely analyzed for male carrier screening tests. Gene specific notes and limitations may be present. See below.
- Genetic counseling is recommended. Available genetic counselors and additional resources can be found at the National Society of Genetic Counselors (NSGC; https://www.nsgc.org)

LIMB-GIRDLE MUSCULAR DYSTROPHY, TYPE 2D

Patient	N6002, DONOR	Partner
Result	Carrier	N/A
Variant Details	SGCA (NM_000023.4) c.229C>T (p.Arg77Cys)	N/A

What is Limb-girdle muscular dystrophy, type 2D?

Limb-girdle muscular dystrophy, type 2D is a neuromuscular disease that manifests as weakness and wasting of the muscles in the arms and legs, including the muscles of the shoulders, upper arms, pelvic area, and thighs as well. The severity, age of onset, and symptoms of limb-girdle muscle dystrophy vary among the subtypes of this condition and may be inconsistent within the same family. Signs and symptoms may first appear at any age and generally worsen with time, although in some cases they remain mild. In the early stages of limb-girdle muscular dystrophy, affected individuals may have an unusual gait, exercise intolerance, and may also have difficulty running. Affected individuals may need to use their arms to press themselves up from a squatting position because of their weak thigh muscles. As the condition progresses, people with limb-girdle muscular dystrophy, type 2D may eventually require wheelchair assistance. Muscle wasting may cause changes in posture with significant losses of strength and movement.

What is my risk of having an affected child?

Limb-girdle muscular dystrophy, type 2D is inherited in an autosomal recessive manner. If the patient and the partner are both carriers, the risk for an affected child is 1 in 4 (25%).

What kind of medical management is available?

The prognosis depends upon the severity of each condition. There is no cure for these conditions and management should be tailored to each individual's needs. Individuals should be treated and evaluated by a multidisciplinary team of specialists. Speech and physical therapies, use of respiratory aids and mobility devices (wheelchairs) may be required.

What mutation was detected?

The detected heterozygous variant was NM_000023.4:c.229C>T (p.Arg77Cys). This missense variant, p.Arg77Cys, is one of the most frequently reported pathogenic variants in individuals with LGMD2D and has been reported in the compound heterozygous and homozygous states (PubMed: 9032047, 7657792, 9192266, 15736300, 9845765, 15736300, 21856579, 23989969, 30919934). This variant is located within exon 3 of the SGCA gene, which has been considered a 'hot spot' for pathogenic variants, accounting for 46% of the affected cases (PubMed: 9192266). Functional studies have shown that the alpha-sarcoglycan protein with this variant fails to localize properly to the plasma membrane, remaining in the endoplasmic reticulum where it is ultimately degraded (PubMed: 22095924, 18252745, 16787395). This variant is classified as "Pathogenic" in ClinVar, with multiple submitters in agreement (ClinVar: 9437). The laboratory classifies this variant as pathogenic.

PHENYLALANINE HYDROXYLASE DEFICIENCY (PHENYLKETONURIA)

Patient	N6002, DONOR	Partner
Result	 Carrier 	N/A
Variant Details	<i>PAH</i> (NM_000277.3) c.1315+1G>A (p.?)	N/A

What is Phenylalanine Hydroxylase deficiency (Phenylketonuria)?

Phenylalanine hydroxylase deficiency (phenylketonuria, or "PKU") is an inherited disorder that increases the levels of a substance called phenylalanine in the blood. Without treatment, phenylalanine builds up in the body, and affected children develop permanent intellectual disabilities. Seizures, delayed development, behavioral problems, and psychiatric disorders are also common. Less severe forms of this condition, sometimes called variant PKU and non-PKU hyperphenylalaninemia, have a smaller risk of brain damage.

What is my risk of having an affected child?

PKU is inherited in an autosomal recessive manner. This means that when both parents are carriers, there is a 25% (1 in 4) risk of having an affected child.

What kind of medical management is available?

PKU is screened for via newborn screening in all 50 states. There is currently no cure for PKU, but with a restricted diet and lifestyle modification, the prognosis is good. However, a restricted diet can be difficult. The support of physicians, nutritionists, social workers, nurses, and family is necessary to maintain an appropriate diet. The US Food and Drug Administration (FDA) has approved a drug (sapropterin hydrochloride) that is effective in allowing a less restricted diet without negative symptoms in some individuals with PKU.

What mutation was detected?

The detected heterozygous variant was NM_000277.3:c.1315+1G>A (p.?). This intronic variant, c.1315+1G>A, alters the highly conserved splice donor site for exon 12 of this transcript and is predicted by all five splice site prediction tools queried to abolish canonical splice donor activity. A functional study using patient-derived mRNA found that this variant resulted in exon skipping of exon 12, producing a molecularly stable transcript joining exon 11 to exon 13, not targeted for nonsense-mediated decay (PubMed: 3615198). However, a functional study in cultured mammalian cells found that this variant resulted in little to no phenylalanine hydroxylase activity (PubMed: 2014036).This variant, c.1315+1G>A, has been previously reported in multiple patients with phenylketonuria and the pathogenicity of the variant has been well established (PubMed: 9634518, 3008810, 3615198, 25596310, 26542770, 24368688).This variant has been reviewed by an expert panel and is classified as "Pathogenic" in ClinVar, with multiple submitters in agreement (ClinVar: 576). The laboratory classifies this variant as pathogenic.

GENES TESTED:

Beacon Preconception Carrier Screening - 515 Genes (without X-linked Disorders) - 515 Genes This analysis was run using the Beacon Preconception Carrier Screening - 515 Genes (without X-linked Disorders) gene list. 515 genes were tested with 99.5% of targets sequenced at >20x coverage. For more gene-specific information and assistance with residual risk calculation, see the SUPPLEMENTAL TABLE.

AAAS, ABCA12, ABCA3, ABCA4, ABCB11, ABCB4, ABCC2, ABCC8, ACAD9, ACAD9, ACADVL, ACAT1, ACOX1, ACSF3, ADA, ADAMTS2, ADAMTSL4, ADGRG1, ADGRV1, AGA, AGL, AGPS, AGXT, AHI1, AIPL1, AIRE, ALDH3A2, ALDH7A1, ALDOB, ALG1, ALG6, ALMS1, ALPL, AMN, AMT, ANO10, AP1S1, AQP2, ARG1, ARL6, ARSA, ARSB, ASL, ASNS, ASPA, ASS1, ATM, ATP6V1B1, ATP7B, ATP78B1, BBS1, BBS10, BBS12, BBS2, BBS2, BBS5, BBS7, BBS9, BCKDHA, BCKDHB, BCS1L, BLM, BLOC1S3, BLOC1S6, BMP1, BRIP1, BSND, CAD, CANT1, CAPN3, CASQ2, CBS, CC2D1A, CC2D2A, CCDC103, CCDC39, CCDC38, CD3D, CD3E, CD40, CD59, CDH23, CEP152, CEP290, CERKL, CFTR, CHAT, CHRNE, CHRNG, CIITA, CLCN1, CLN3, CLN5, CLN6, CLN8, CLRN1, CNGB3, COL11A2, COL17A1, COL27A1, COL4A3, COL4A4, COL7A1, COX15, CPS1, CPT1A, CPT2, CRB1, CRTAP, CRYL1, CTNS, CTSA, CTSC, CTSD, CTSK, CYBA, CYP11A1, CYP11B1, CYP11B2, CYP17A1, CYP19A1, CYP1B1, CYP21A2, CYP27A1, CYP27B1, CYP7B1, DBT, DCAF17, DCLRE1C, DDX11, DGAT1, DGUOK, DHCR7, DHDDS, DLD, DLL3, DNAH11, DNAH5, DNAI1, DNAI2, DNMT3B, DOK7, DUOX2, DYNC2H1, DYSF, EIF2AK3, EIF2B1, EIF2B2, EIF2B3, EIF2B4, EIF2B5, ELP1, EPG5, ERCC2, ERCC6, ERCC8, ESCO2, ETFA, ETFB, ETFDH, ETHE1, EVC, EVC2, EXOSC3, EYS, FAH, FAM161A, FANCA, FANCC, FANCC2, FANCE, FANCG, FANCI, FANCI, FBP1, FBXO7, FH, FKBP10, FKRP, FKTN, FMO3, FOXN1, FOXRED1, FRAS1, FREM2, FUCA1, G6PC, G6PC3, GAA, GALC, GALE, GALK1, GALNS, GALNT3, GALT, GAMT, GATM, GBA, GBE1, GCDH, GCH1, GDF5, GFM1, GHR, GJB2, GJB6, GLB1, GLDC, GLE1, GNE, GNPAT, GNPTAB, GNPTG, GNS, GORAB, GRHPR, GRIP1, GSS, GUCY2D, GUSB, HADH, HADHA, HADHB, HAMP, HAX1, HBA1, HBA2, HBB, HEXA, HEXB, HGSNAT, HJV, HLCS, HMGCL, HMOX1, HOGA1, HPD, HPS1, HPS3, HPS4, HPS5, HPS6, HSD17B3, HSD17B4, HSD3B2, HYAL1, HYLS1, IDUA, IGHMBP2, IKBKB, IL7R, INVS, ITGA6, ITGB3, ITGB4, IVD, JAK3, KCNJ1, KCNJ11, LAMA2, LAMA3, LAMB3, LAMC2, LARGE1, LCA5, LDLR, LDLRAP1, LHX3, LIFR, LIG4, LIPA, LMBRD1, LOXHD1, LPL, LRAT, LRP2, LRPPRC, LYST, MAK, MAN2B1, MANBA, MCEE, MCOLN1, MCPH1, MECR, MED17, MESP2, MFSD8, MKKS, MKS1, MLC1, MLYCD, MMAA, MMAB, MMACHC, MMADHC, MOCS1, MOCS2, MPI, MPL, MPV17, MRE11, MTHER, MTR, MTRP, MUSK, MUT, MVK, MYO15A, MYO7A, NAGA, NAGLU, NAGS, NBN, NCF2, NDRG1, NDUFAF2, NDUFAF5, NDUFS4, NDUFS6, NDUFS7, NDUFV1, NEB, NEU1, NGLY1, NPC1, NPC2, NPHP1, NPHS1, NPHS2, NR2E3, NSMCE3, NTRK1, OAT, OCA2, OPA3, OSTM1, OTOA, OTOF, P3H1, PAH, PANK2, PC, PCBD1, PCCA, PCCB, PCDH15, PCNT, PDHB, PEPD, PET100, PEX1, PEX10, PEX12, PEX13, PEX16, PEX2, PEX26, PEX5, PEX6, PEX7, PFKM, PGM3, PHGDH, PHKB, PHKG2, PHYH, PIGN, PJVK, PKHD1, PLA2G6, PLEKHG5, PLOD1, PMM2, PNPO, POLG, POLH, POMGNT1, POMT1, POMT2, POR, POU1F1, PPT1, PRCD, PRDM5, PRF1, PROP1, PSAP, PTPRC, PTS, PUS1, PYGM, QDPR, RAB23, RAG1, RAG2, RAPSN, RARS2, RDH12, RLBP1, RMRP, RNASEH2A, RNASEH2B, RNASEH2C, RPE65, RPGRIP1L, RTEL1, RXYLT1, RYR1, SACS, SAMD9, SAMHD1, SCO2, SEC23B, SEPSECS, SGCA, SGCB, SGCD, SGCG, SGSH, SKIV2L, SLC12A1, SLC12A3, SLC12A6, SLC17A5, SLC19A2, SLC19A3, SLC12A5, SLC22A5, SLC25A13, SLC25A15, SLC25A20, SLC26A2, SLC26A3, SLC26A3, SLC26A4, SLC26A3, SLC26A3, SLC26A4, SLC26A5, SLC2 SLC2744, SLC3543, SLC3744, SLC3848, SLC3944, SLC4542, SLC4411, SLC545, SLC747, SMARCAL1, SMN1, SMPD1, SNAP29, SPG11, SPR, SRD542, ST3GAL5, STAR, STX11, STXBP2, SUMET SUCK SUBET SYNET TANGOZ TAT TROD TROE TOIRGT TONZ TEOPRZ TERT TE TERZ TO TOMT TH TKZ TMC1 TMEM216 TMEM67 TMPRSS3 TPO TPP1 TREXT TRIM32, TRIM37, TRMU, TSEN54, TSEM, TSHB, TSHB, TSHB, TTC37, TTPA, TULP1, TYMP, TYR, TYRP1, UBR1, UNC13D, USH1C, USH2A, VDR, VLDLR, VPS11, VPS13A, VPS13B, VPS45, VPS53, VRK1, VSX2, WISP3, WNT10A, WRN, XPA, XPC, ZBTB24, ZFYVE26, ZNF469

METHODS:

Genomic DNA was isolated from the submitted specimen indicated above (if cellular material was submitted). DNA was barcoded, and enriched for the coding exons of targeted genes using hybrid capture technology. Prepared DNA libraries were then sequenced using a Next Generation Sequencing technology. Following alignment to the human genome reference sequence (assembly GRCh37), variants were detected in regions of at least 10x coverage. For this specimen, 99.55% and 99.51% of coding regions and splicing junctions of genes listed had been sequenced with coverage of at least 10x and 20x, respectively, by NGS or by Sanger sequencing. The remaining regions did not have 10x coverage, and were not evaluated. Variants were interpreted manually using locus specific databases, literature searches, and other molecular biological principles. To minimize false positive results, any variants that do not meet internal quality standards are confirmed by Sanger sequencing. Variants classified as pathogenic, likely pathogenic, or risk allele which are located in the coding regions and nearby intronic regions (+/- 20bp) of the genes listed above are reported. Variants outside these intervals may be reported but are typically not guaranteed. When a single pathogenic or likely pathogenic variant is identified in a clinically relevant gene with autosomal recessive inheritance, the laboratory will attempt to ensure 100% coverage of coding sequences either through NGS or Sanger sequencing technologies ("fill-in"). All genes listed were evaluated for large deletions and/or duplications. However, single exon deletions or duplications will not be detected in this assay, nor will copy number alterations in regions of genes with significant pseudogenes. Putative deletions or duplications are analyzed using Fulgent Germline proprietary pipeline for this specimen. Bioinformatics: The Fulgent Germline v2019.2 pipeline was used to analyze this specimen.

LIMITATIONS:

General Limitations

These test results and variant interpretation are based on the proper identification of the submitted specimen, accuracy of any stated familial relationships, and use of the correct human reference sequences at the queried loci. In very rare instances, errors may result due to mix-up or co-mingling of specimens. Positive results do not imply that there are no other contributors, genetic or

otherwise, to future pregnancies, and negative results do not rule out the genetic risk to a pregnancy. Official gene names change over time. Fulgent uses the most up to date gene names based on HUGO Gene Nomenclature Committee (https://www.genenames.org) recommendations. If the gene name on report does not match that of ordered gene, please contact the laboratory and details can be provided. Result interpretation is based on the available clinical and family history information for this individual, collected published information, and Alamut annotation available at the time of reporting. This assay is not designed or validated for the detection of low-level mosaicism or somatic mutations. This assay will not detect certain types of genomic aberrations such as translocations, inversions, or repeat expansions other than specified genes. DNA alterations in regulatory regions or deep intronic regions (greater than 20bp from an exon) may not be detected by this test. Unless otherwise indicated, no additional assays have been performed to evaluate genetic changes in this specimen. There are technical limitations on the ability of DNA sequencing to detect small insertions and deletions. Our laboratory uses a sensitive detection algorithm, however these types of alterations are not detected as reliably as single nucleotide variants. Rarely, due to systematic chemical, computational, or human error, DNA variants may be missed. Although next generation sequencing technologies and our bioinformatics analysis significantly reduce the confounding contribution of pseudogene sequences or other highly-homologous sequences, sometimes these may still interfere with the technical ability of the assay to identify pathogenic alterations in both sequencing and deletion/duplication analyses. Deletion/duplication analysis can identify alterations of genomic regions which include one whole gene (buccal swab specimens and whole blood specimens) and are two or more contiguous exons in size (whole blood specimens only); single exon deletions or duplications may occasionally be identified, but are not routinely detected by this test. When novel DNA duplications are identified, it is not possible to discern the genomic location or orientation of the duplicated segment, hence the effect of the duplication cannot be predicted. Where deletions are detected, it is not always possible to determine whether the predicted product will remain in-frame or not. Unless otherwise indicated, deletion/duplication analysis has not been performed in regions that have been sequenced by Sanger.

Gene Specific Notes and Limitations

ALG1: Due to the interference by highly homologous regions, our current testing method has less sensitivity to detect variants in exons 6-13 of the ALG1 gene (NM 019109.4). CEP290: Copy number analysis for exons 8-13 and exons 39-42 may have reduced sensitivity in the CEP290 gene. Confirmation of these exons are limited to individuals with a positive personal history of CEP290-related conditions and/or individuals carrying a pathogenic/likely pathogenic sequence variant. <u>CFTR:</u> Analysis of the intron 8 polymorphic region (e.g. IVS8-5T allele) is only performed if the p.Arg117His (R117H) mutation is detected. Single exon deletion/duplication analysis is limited to deletions of previously reported exons: 1, 2, 3, 11, 19, 20, 21. CRYL1: As mutations in the CRYL1 gene are not known to be associated with any clinical condition, sequence variants in this gene are not analyzed. However, to increase copy number detection sensitivity for large deletions including this gene and a neighboring on gene on the panel (GJB6, also known as connexin 30), this gene was evaluated for copy number variation. CYP11B1: The current testing method is not able to reliably detect certain pathogenic variants in this gene due to the interference by highly homologous regions. This analysis is not designed to detect or rule-out copy-neutral chimeric CYP11B1/CYP11B2 gene. CYP11B2: The current testing method is not able to reliably detect certain pathogenic variants in this gene due to the interference by highly homologous regions. This analysis is not designed to detect or rule-out copy-neutral chimeric CYP11B1/CYP11B2 gene. CYP21A2: Significant pseudogene interference and/or reciprocal exchanges between the CYP21A2 gene and its pseudogene, CYP21A1P, have been known to occur and may impact results. As such, the relevance of variants reported in this gene must be interpreted clinically in the context of this individual's clinical findings, biochemical profile, and family history. DDX11: Due to the interference by highly homologous regions, our current testing method has less sensitivity to detect variants in the DDX11 gene. DUOX2: The current testing method is not able to reliably detect variants in exons 6-8 of the DUOX2 gene (NM_014080.5) due to significant interference by the highly homologous gene, DUOX1. FANCD2: Due to pseudogene interference, copy-number-variants within exon 14-17 of the FANCD2 gene (NM _033084.4) are not evaluated and detection of singlenucleotide variants and small insertions/deletions in this region is not guaranteed. GALT: In general, the D2 "Duarte" allele is not reported if detected, but can be reported upon request. While this allele can cause positive newborn screening results, it is not known to cause clinical symptoms in any state. See GeneReviews for more information: https://www.ncbi.nlm.nih.gov/books/NBK1518/ GBA: Significant pseudogene interference and/or reciprocal exchanges between the GBA gene and its pseudogene, GBAP1, have been known to occur and may impact results. As such, the relevance of variants reported in this gene must be interpreted clinically in the context of this individual's clinical findings, biochemical profile, and family history. The current testing method cannot detect copy-neutral rearrangements between the pseudogene and the functional gene, which have been reported in very rare cases of Gaucher disease (PubMed: 21704274). HBA1: Significant interference from highly homologous regions in exons 1-2 of the HBA1 gene has been recognized to occur, potentially impeding the assay's technical capability to detect pathogenic alterations during sequencing analyses. HBA2: Significant interference from highly homologous regions in exons 1-2 of the HBA2 gene has been recognized to occur, potentially impeding the assay's technical capability to detect pathogenic alterations during sequencing analyses. HSD17B4: Copy number analysis for exons 4-6 may have reduced sensitivity in the HSD17B4 gene. Confirmation of these exons are limited to individuals with a positive personal history of D-bifunctional protein deficiency and Perrault syndrome and/or individuals carrying a pathogenic/likely pathogenic sequence variant. LMBRD1: Copy number analysis for exons 9-12 may have reduced sensitivity in the LMBRD1 gene. Confirmation of these exons are limited to individuals with a positive personal history of combined

methylmalonic aciduria and homocystinuria and/or individuals carrying a pathogenic/likely pathogenic sequence variant. <u>MTHFR:</u> As recommended by ACMG, the two common polymorphisms in the MTHFR gene - c.1286A>C (p.Glu429Ala, also known as c.1298A>C) and c.665C>T (p.Ala222Val, also known as c.677C>T) - are not reported in this test due to lack of sufficient clinical utility to merit testing (PubMed: 23288205). <u>NEB:</u> This gene contains a 32-kb triplicate region (exons 82-105) which is not amenable to sequencing and deletion/duplication analysis. <u>OTOA:</u> Due to pseudogene interference, our current testing method is not able to reliably detect variants in exons 20-28 (NM_144672.3) in the OTOA gene. <u>SMN1:</u> The current testing method detects sequencing variants and copy number variation in exons 7 of the SMN1 gene (NM_022874.2). Sequencing and deletion/duplication analysis are not performed on any other region in this gene. <u>TERT:</u> The TERT promoter region is analyzed for both sequencing and copy number variants. <u>TYR:</u> Due to the interference by highly homologous regions, our current testing method has less sensitivity to detect variants in exons 4-5 of the TYR gene (NM_000372.5). <u>WRN:</u> Due to the interference by highly homologous regions, (NM_000553.6).

SIGNATURE:

ander

Yan Meng, Ph.D., CGMB, FACMG on 3/28/2024 Laboratory Director, Fulgent

DISCLAIMER:

This test was developed and its performance characteristics determined by Fulgent Therapeutics LLC CAP #8042697 CLIA #05D2043189; 4399 Santa Anita Ave., El Monte, CA, 91731. It has not been cleared or approved by the FDA. The laboratory is regulated under CLIA as qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Since genetic variation, as well as systematic and technical factors, can affect the accuracy of testing, the results of testing should always be interpreted in the context of clinical and familial data. For assistance with interpretation of these results, healthcare professionals may contact us directly at **626-350-0537** or by email at **info@fulgentgenetics.com**. It is recommended that patients receive appropriate genetic counseling to explain the implications of the test result, including its residual risks, uncertainties and reproductive or medical options.

To view the supplemental table describing the carrier frequencies, detection rates, and residual risks associated with the genes on this test please visit the following link:

Beacon Expanded Carrier Screening Supplemental Table

Lab:EZ

Patient Information	Specimen Information	Client Information
N6002, DONOR	Specimen: OW648715Y Requisition: 0000635	Client #: 98105026 VNLZR00 KUAN, JAMES K
DOB:AGE:Gender:MFasting:UPhone:206.588.1484Patient ID:N6002	Collected:03/20/2024 / 14:00 PDTReceived:03/21/2024 / 03:35 PDTReported:04/04/2024 / 00:15 PDT	SEATTLE SPERM BANK 4915 25TH AVE NE STE 204W SEATTLE, WA 98105-5668

COMMENTS: FASTING:UNKNOWN

Cytogenetic Report

CHROMOSOME ANALYSIS, BLOOD - 14596 CHROMOSOME ANALYSIS, BLOOD

Order ID:24-136080Specimen Type:BloodClinical Indication:GAMETE DONOR

RESULT: NORMAL MALE KARYOTYPE

INTERPRETATION:

Chromosome analysis revealed normal G-band patterns within the limits of standard cytogenetic analysis.

Please expect the results of any other concurrent study in a separate report.

NOMENCLATURE:

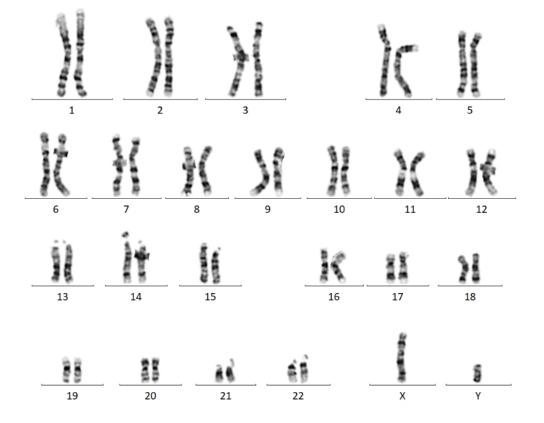
46,XY

ASSAY INFORMATION:

Method:	G-Band (Digital Analysis: MetaSyst
Cells Counted:	20
Band Level:	450
Cells Analyzed:	5
Cells Karyotyped:	5

This test does not address genetic disorders that cannot be detected by standard cytogenetic methods or rare events such as low level mosaicism or subtle rearrangements.

Sibel Kantarci, PhD, FACMG (800) NICHOLS-4307, [site SJC


Electronic Signature: 4/4/2024 2:07 AM

CLIENT SERVICES: 1-866-MYQUEST

Patient Information		Specimen Information	Client Information
N6002, DONOR		Specimen: OW648715Y Collected: 03/20/2024 / 14:00 PI	Client #: 98105026 DT KUAN, JAMES K
DOB: Gender: M Patient ID: N6002	AGE: Fasting: U	Received: 03/21/2024 / 03:35 PI Reported: 04/04/2024 / 00:15 PI	

PERFORMING SITE:

EZ QUEST DIAGNOSTICS/NICHOLS SJC, 33608 ORTEGA HWY, SAN JUAN CAPISTRANO, CA 92675-2042 Laboratory Director: IRINA MARAMICA, MD, PHD, MBA, CLIA: 05D0643352